Home Search Collections Journals About Contact us My IOPscience

Crystal field energy levels of Eu^{3+} and Yb^{3+} in the C₂ and S₆ sites of the cubic C-type R₂ O₃

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2003 J. Phys.: Condens. Matter 15 863

(http://iopscience.iop.org/0953-8984/15/6/313)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.119 The article was downloaded on 19/05/2010 at 06:34

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 15 (2003) 863-876

Crystal field energy levels of Eu^{3+} and Yb^{3+} in the C_2 and S_6 sites of the cubic C-type R_2O_3

Elisabeth Antic-Fidancev^{1,3}, Jorma Hölsä² and Mika Lastusaari²

 ¹ Laboratoire de Chimie Appliquée de l'État Solide, UMR-7574, CNRS, ENSCP, 11, rue Pierre et Marie Curie, F-75231 Paris Cédex 05, France
 ² Laboratory of Inorganic Chemistry, Department of Chemistry, University of Turku, FIN-20014 Turku, Finland

E-mail: antic@ext.jussieu.fr

Received 15 July 2002 Published 3 February 2003 Online at stacks.iop.org/JPhysCM/15/863

Abstract

In the cubic C-type rare-earth (R) sesquioxides, C-R₂O₃, the trivalent R ions (R³⁺) occupy two different crystallographic sites with S₆ and C₂ symmetries. The R ions in the C₂ lattice site have been studied intensively whereas the properties of the R³⁺ ions in the S₆ site are largely unknown or the data are contradictory. Based on the spectroscopic data reinterpreted by a phenomenological crystal field (cf) analysis a new interpretation was obtained for the energy level scheme of the Eu³⁺ ions in the S₆ site of C-R₂O₃. The cf parameters obtained were then used to predict the energy level scheme of the Yb³⁺ ion in the same host lattices. In the prediction, the evolution of the cf parameters along the R series studied earlier in the R oxide and garnet systems was used. The relationship between the cf strength parameter and the overall splitting of the ^{2S+1}L_J levels as well as the relationship between the barycentres of the free ion levels were used, also, to reinterpret the energy level scheme of the Yb³⁺ ion in the C₂ site of C-Y₂O₃.

1. Introduction

The diode-pumped solid-state (tunable) laser (DPSSL) systems based on Yb³⁺-doped materials are being studied intensively at the moment [1]. The potential host lattices considered for this promising pseudo-three-level lasing system include simple or complex oxide, garnet, borate, silicate, and tungstate systems [1–8]. The cubic C-type rare-earth (R) sesquioxides, C-R₂O₃, are other possible host compounds due to their wide transparency in the wavelength range involved, around 1000 nm. The C-R₂O₃ host lattice can easily be doped with R³⁺ ions which usually exhibit high luminescence efficiency. Some materials (e.g. Y₂O₃:Eu³⁺) have found

0953-8984/03/060863+14\$30.00 © 2003 IOP Publishing Ltd Printed in the UK

³ Author to whom any correspondence should be addressed.

Figure 1. A schematic presentation of the R^{3+} coordination in the C_2 and S_6 sites of cubic C-Y₂O₃.

commercial applications, e.g. as the red-emitting phosphor in low-pressure mercury fluorescent tubes [9]. For the laser application, in addition to the high luminescence efficiency, high heat conductivity is needed to dissipate the heat due to pumping. The heat conductivity of $C-Y_2O_3$ is higher than that of the classical laser material, yttrium aluminium garnet (YAG). High-quality single crystals of $C-Y_2O_3$ can be grown, too. All these properties make the cubic R oxides attractive candidates for providing very stable and efficient host lattices for high-power solid-state laser applications.

The cubic C-type R sesquioxides are also well suited for use in systematic theoretical studies dealing with various luminescence phenomena since the cubic form extends over a wide host cation range, from R = Eu to Lu, Y, and Sc as well as In. The extended structural isomorphism gives the invaluable possibility to explore the evolution of many properties of different R^{3+} ions as dopants. A wealth of literature data about e.g. the energy level schemes is thus available [10, 11].

According to the latest crystal structure data available [12–14], the cubic C-type R oxides are isomorphic with the mineral bixbyite, $(Mn, Fe)_2O_3$ (space group *Ia3*, No 206, Z = 16 [15]). The R³⁺ ions occupy two sixfold-coordinated though distinctly non-equivalent sites with C₂ and S₆ point symmetries. The two sites differ from each other in the position of the R³⁺ ion relative to the oxygen vacancy (figure 1). In contrast to the case for the S₆ site, there is no centre of inversion symmetry in the C₂ site.

The presence of inversion symmetry in the \mathbb{R}^{3+} site drastically affects the luminescence spectra of the \mathbb{R}^{3+} -doped materials since in this case induced electric dipole transitions cannot gain intensity by the mixing of opposite parity electron configurations with the $4f^N$ one. The electric dipole transitions can occur only by weak vibronic coupling. The relatively weak magnetic dipole-induced transitions remain possible for ions residing in a site with inversion symmetry. However, the free ion selection rules strongly restrict the possible transitions of this type through the $\Delta J = 0, \pm 1$ (except for $0 \leftrightarrow 0$) rule. Only few pure magnetic dipole transitions are found in the \mathbb{R}^{3+} spectra. The best examples can be found in the emission and absorption spectra of the \mathbb{Eu}^{3+} ion (the $4f^6$ electron configuration). For \mathbb{Eu}^{3+} -doped cubic C- \mathbb{R}_2O_3 , only a few lines are due to the \mathbb{Eu}^{3+} ions in the S_6 sites, and practically all transitions usually observed originate from the \mathbb{Eu}^{3+} ions in the \mathbb{C}_2 sites. This leads to it being a very difficult task to determine the energy level scheme of the \mathbb{R}^{3+} ions in the S_6 site. The correct estimation of the energy level scheme of the Yb^{3+} ion is essential for the understanding of the spectroscopic properties of lasing materials. Many other important laser quantities depend also on the fine details of the local crystal fields (cfs) surrounding the Yb^{3+} ions in the host lattice. This paper is devoted to the study of the energy level scheme of the Yb^{3+} ions in the C₂ and S₆ sites in C-type R oxides. A further aim of the present work is to connect the estimation of the energy level scheme of the Yb^{3+} ion with the phenomenological cf simulation to the more accessible experimental energy level schemes for the Eu³⁺ ions in the C₂ and S₆ sites of the cubic C-type R₂O₃.

2. Experimental details

2.1. Sample preparation

The polycrystalline Eu^{3+} -doped yttrium oxide C-Y₂O₃ was prepared by heating the mixed R oxalate hydrate, $(Y, Eu)_2(C_2O_4)_3 \cdot xH_2O$, precipitates in air at 1100 °C for 4 h. For luminescence measurements the Y³⁺ host cation was partially replaced by a small amount of Eu^{3+} ions, nominally 2 mol%. The distribution of the dopant was assumed random and uniform which, however, does not completely exclude the statistical possibility of dopant pairs or higher associations. The samples were checked with routine x-ray powder diffraction analysis but no impurity phases or other anomalies were detected. The spectroscopic measurements revealed a complete solid solubility between the Eu^{3+} dopant and the Y³⁺ host cation.

2.2. Spectroscopic measurements

The luminescence of the Eu³⁺-doped C-type Y₂O₃ was excited by a 200 W (OSRAM HBO) mercury lamp equipped with a wide-band filter providing global UV excitation around 300 nm. This wavelength region corresponds to the strong charge transfer absorption band of the Eu³⁺ ion. Different blue lines (454.4 and 457.9 nm) of a Spectra Physics 5 W continuous wave Ar⁺-ion laser were used to excite the Eu³⁺ ion, too. Selective excitation at the ⁵D₀ level of Eu³⁺ near 580 nm was carried out with a Spectra Physics 375/376 continuous wave rhodamine 6G dye laser. The emission attributed mainly to the ⁵D₀ \rightarrow ⁷F₀₋₄ transitions was dispersed by a 1 m Jarrell-Ash single monochromator equipped with standard photomultiplier detection. All measurements were carried out at liquid nitrogen (77 K) and room temperatures (298 K). The resolution of the equipment was better than 1.0 cm⁻¹.

2.3. Energy level scheme calculations

The complex energy level schemes of the \mathbb{R}^{3+} ions in the solid state result from several interactions—both within the $4f^N$ electron configuration and between the \mathbb{R}^{3+} ion and its environment. Each interaction can be described with the aid of effective operators and their effect can be parametrized by using phenomenological models. The Coulombic interaction between the 4f electrons is described with the Slater integrals F^k (k = 0, 2, 4, and 6) or Racah parameters E_k (k = 0, 1, 2, and 3). The spin–orbit coupling (the coupling constant ζ_{4f}) splits the terms into the ${}^{2S+1}L_J$ states. α , β , and γ are the two-body electrostatic Trees parameters, and the T^k (Judd parameters) describe the corresponding three-body interactions. The effective Hamiltonian H_{FI} comprising these interactions can be written as follows:

$$H_{FI} = \sum_{k=0}^{5} E_k (nf, nf) e^k + \zeta_{4f} A_{SO} + \alpha L(L+1) + \beta G(G_2) + \gamma G(R_7) + \sum_{k=2,3,4,6,7,8} T^k t_k \quad (1)$$

where the angular parts e^k , A_{SO} , L, $G(G_2)$, $G(R_7)$, and t_k have their usual meanings [16, 17]. Higher-order magnetic spin–spin and spin–other-orbit interactions as well as the electrostatically correlated spin-orbit interactions can be parametrized by Marvin integrals M^k (k = 0, 2, and 4) and P^k (k = 2, 4, and 6), respectively.

When the \mathbb{R}^{3+} ion is introduced into a solid it experiences an inhomogeneous electrostatic field produced by the surrounding charge distribution. The cf Hamiltonian H_{CF} can be obtained as follows [16]:

$$H_{CF} = \sum_{k} \sum_{q=-k}^{q=k} \{ B_{q}^{k} [C_{q}^{k} + (-1)^{q} C_{-q}^{k}] + i S_{q}^{k} [C_{q}^{k} - (-1)^{-q} C_{-q}^{k}] \}$$
(2)

where the parameters B_q^k and S_q^k are the coefficients of the cf expansion, i.e. the real and imaginary functions of the radial distances, respectively. The C_q^k are tensor operators of rank k closely related to the spherical harmonics.

The phenomenological simulation of the cf energy level scheme of the R^{3+} ions involves the determination of a large number of parameters (even more than 30) from the experimentally determined energy level scheme. For the two R^{3+} ions, Eu^{3+} and Yb^{3+} , dealt with in this study, the situation is quite different. For the Yb^{3+} ion with the $4f^{13}$ electron configuration, only one free ion parameter, the spin–orbit coupling constant ζ_{4f} , must be determined from the experimental data. A value of 2897 cm⁻¹ was used in all the calculations for Yb^{3+} .

The 4f⁶ electron configuration of the Eu³⁺ ion is very complex with up to 3003 cf levels. The simulation of the cf effect is usually carried out by using the 49 cf levels of the ground term, the ⁷F_J (J = 0–6) septet only. This drastic truncation can be justified by the weak mixing of the ground septet with the rest of the 4f⁶ configuration, but it may lead to erroneous positions of the ⁷F_J level barycentres. This problem was partially dealt with earlier [18] but in spite of the pitfalls involved this method of simulation was used in this work, too.

The best-fit set of the cf parameters was obtained through minimizing the rms function σ between the observed and calculated energy level values with the standard least-squares refinement by using the program IMAGE [19].

3. Results and discussion

3.1. Energy level scheme of Eu^{3+} in the S₆ site

The overwhelming majority of the spectroscopic investigations on the cubic C-type R sesquioxides, C-R₂O₃, have dealt with the spectroscopic properties of the R³⁺ ions in the low-symmetry C₂ site [10, 11]. While still concentrating on the main site (the C₂ sites—24—are three times more frequent than the S₆ sites—8—in the unit cell of C-R₂O₃), some investigations have dealt also with the properties of the S₆ site [20–24]. Several spectral lines were assigned [20] as originating from the Eu³⁺ ions in the S₆ site of the cubic C-Y₂O₃: two in absorption, corresponding to the ⁷F₀ \rightarrow ⁵D₁ transition, and two in emission, corresponding to the ⁵D₀ \rightarrow ⁷F₁ transition. Monitoring the evolution of the intensity of the ⁷F₁ \rightarrow ⁵D₀ transition at 17 170 cm⁻¹ in absorption as a function of temperature, the ⁷F₀ \rightarrow ⁷F₁ energy difference was determined and eventually the ⁵D₀ level position was derived to be at 17 302 cm⁻¹.

The present study carried out on the luminescence of the Eu^{3+} -doped C-R₂O₃ series under Ar⁺ laser excitation at 454.5 nm confirmed in principle the results of the previous study [20]. A similar emission spectrum for the polycrystalline Y₂O₃:Eu³⁺ sample was observed for the Eu³⁺ ions residing in the S₆ site. The spectroscopic results of the present study and those found in the literature [20–23] together with the deductions on the energy level scheme are compiled into tables 1 and 2. The results from different sources seem to be in rather good agreement—but only as far as the energy level positions are concerned. Since the polarization measurements of spectral lines are practically the only reliable ones to indicate the correct level assignments,

Energy (cm^{-1}) Transition [20] [21] [22] This work $^{7}F_{0} \rightarrow {}^{5}D_{1}$ 19080 $^{7}F_{0} \rightarrow {}^{5}D_{1}$ 18 996 ${}^{5}\text{D}_{1} \rightarrow {}^{7}\text{F}_{0}{}^{a}$ 18991 18 997 ${}^{5}\text{D}_{1} \rightarrow {}^{7}\text{F}_{2}{}^{a}$ 18 157^a $^{7}F_{0} \rightarrow {}^{5}D_{0}$ 17302 ${}^{5}\text{D}_{0} \rightarrow {}^{7}\text{F}_{1}$ 17170 17176 17176 17 177 16873 16863 16869 16880 Vibronics 16793 16829 16775

Table 1. Electronic transitions in the spectra of the Eu^{3+} ions in the S₆ point site in cubic C-Y₂O₃.

^a Lines observed only in the emission spectra.

Table 2. Experimental and calculated ${}^{5}D_{0,1}$ and ${}^{7}F_{0-2}$ energy level schemes of the Eu³⁺ ions in the S₆ site in cubic C-Y₂O₃.

	Energy (cm^{-1})			
$^{2S+1}L_J$ level	[20]	[23]	Experimental	Calculated ^a
⁵ D ₁	19080 (A)			
⁵ D ₁	18991 (E)		18996 (A)	
⁵ D ₁ barycentre	19 021			
⁵ D ₀	17302 (A)			
$^{7}F_{1}$	132 (E)		125 (A)	126 (A)
$^{7}F_{1}$	429 (A)		448 ^b (E)	447 ^b (E)
⁷ F ₁ barycentre	231		340	340
$^{7}F_{2}$		830 (E)	839	821 (E)
		948 (E)		955 (A)
		1184 (A)		1190 (E)
⁷ F ₂ barycentre		948		995

^a Calculated with the crystal field parameters from table 3.

^b Mean value.

those deduced from measurements on powder samples are left always with some uncertainty. Accordingly, the present study gives assignments different from the previous ones [20, 23].

The method used here to obtain the level assignments needs some explanation. Given that all the other facts are similar, the level assignments affect the energy position of the barycentre of each ${}^{2S+1}L_J$ level. The energy gaps between the barycentres depend practically exclusively on the strength of the spin–orbit coupling since this interaction acts only within a given ${}^{2S+1}L$ term [18]. However, this may be true only when the wavefunctions of the levels are pure enough in the original term, i.e. when the quantum number *J* is low in the case of the Eu³⁺ ion. For levels with high *J*-values, the *J*-mixing becomes more important—especially when the cf effect is strong—and the present method may not be applicable [25]. The level assignments to be carried out in this work fulfil the necessary requirement: the levels belong either to the ⁵D or ⁷F term with low *J*-values, i.e. from 0 to 2, since no experimental data are available for higher *J*-levels. Moreover, the ⁷F term is the only one in the 4f⁶ electron configuration and thus the effects of additional interactions mixing the wavefunctions are minimized.

The cf level assignments for the ${}^{5}D_{1}$ and ${}^{7}F_{1-2}$ levels can thus be carried out with high reliability. Both the ${}^{5}D_{1}$ and ${}^{7}F_{1}$ levels are split in the cf of S₆ symmetry into two crystal field

Figure 2. ${}^{5}D_{1}$ barycentre energy as a function of the ${}^{5}D_{0}$ level energy of the Eu $^{3+}$ ion in various host lattices.

levels: one singlet (A) and one doublet (E) [10]. Following the procedure published earlier [18] then applied for the ${}^{7}F_{1}$ barycentre, the barycentre of the ${}^{5}D_{1}$ levels may be presented as a function of the ${}^{5}D_{0}$ level energy (figure 2) for a number of different Eu³⁺-doped compounds. If we adopt the ${}^{5}D_{0}$ level position at 17 302 cm⁻¹ [20] for the C-type Y₂O₃, the barycentre of the two ${}^{5}D_{1}$ cf levels should then be found at 19 060 cm⁻¹ (figure 2). However, following the original level assignments [20], i.e. 18 991 and 19 080 cm⁻¹ for the E and A levels, respectively, the barycentre of the ${}^{5}D_{1}$ level is at 19 022 cm⁻¹ which is clearly too low a value. The original level assignment [20] for the ${}^{5}D_{1}$ level should be reversed, i.e. with the doublet as the higher and the singlet as the lower cf level, since the recalculated barycentre energy at 19 053 cm⁻¹ is then close to the expected value (19 060 cm⁻¹).

The cf level assignments for the ${}^{5}D_{1}$ and ${}^{7}F_{1}$ levels should be the same if both level splittings are significantly different from zero because the cf splittings are controlled by the same cf parameters. Moreover, on the basis of both theoretical considerations and experimental energy level simulations, the ${}^{7}F_{1}$ barycentre energy is in the range from 340 to 380 cm⁻¹ [10, 18]. If we consider the upper ${}^{7}F_{1}$ component as E and the lower as A, the ${}^{7}F_{1}$ barycentre is situated close to the correct range, at 340 cm⁻¹ instead of 231 cm⁻¹ obtained in the earlier study [20]. Previous work on the phenomenological simulation of the energy level scheme of Gd³⁺ in C-Y₂O₃ [26] as well as the semi-empirical calculations [24] on the Eu³⁺ ion in the two sites in C-Y₂O₃ support the present level assignment, i.e. 125 (A) and 448 cm⁻¹ (E).

In order to complete the build-up of the experimental energy level scheme with the ${}^{7}F_{2}$ cf level for the S₆ site, the data concerning some extra lines found in the Raman spectra of C-Y₂O₃:Eu³⁺ [23] are reanalysed. Since the ${}^{7}F_{2}$ level is split in the crystal field of S₆ symmetry into one singlet (A) and two doublet (E) cf levels, the extra lines were originally assigned to the electronic cf levels of the ${}^{7}F_{2}$ level as follows: 830 (E), 948 (E), and 1184 cm⁻¹ (A). This assignment gives the ${}^{7}F_{2}$ barycentre energy as 948 cm⁻¹. As shown for the ${}^{7}F_{1}$ level, this assignment is not necessarily a true one. Accordingly, the previous level assignments were verified by using the procedure based on a relationship between the barycentre energies of the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ levels (figure 3). In contrast to the relationship between the ${}^{5}D_{0}$ level position and the ${}^{5}D_{1}$ barycentre energy, the present relationship is much less smooth. The discrepancies may be taken as an indication of the effect of the *J*-mixing due to the cf interaction [25]. However, an approximate value of 1018 cm⁻¹ can be deduced for the ${}^{7}F_{2}$ barycentre, which is in good agreement with the following cf level reassignment: 830 (A), 948 (E), and 1184 (E).

Figure 3. $^{7}F_{2}$ barycentre energy as a function of the $^{7}F_{1}$ barycentre of the Eu $^{3+}$ ion in various host lattices.

The analysis of the ⁷F energy level scheme of the Eu³⁺ ion in the S₆ site of C-Y₂O₃ could not be continued any further, since no data are available for the ⁷F₃₋₆ cf levels. The lack of data is probably due to the weakness and/or the low purity of the magnetic dipole transitions, e.g. the ⁵D₂ \rightarrow ⁷F₃ and ⁵D₃ \rightarrow ⁷F₄ transitions which should give the information needed.

3.2. Crystal field calculations for Eu^{3+} in the S₆ site

Despite the relatively high point symmetry (S_6) of the Eu³⁺ ion in C-R₂O₃, the cf expansion contains a high number of terms, in total nine of parameters including both six real (B_0^2, B_0^4, B_0^4) B_3^4, B_0^6, B_3^6 , and B_6^6) and three imaginary parts $(S_3^4, S_3^6, \text{and } S_6^6)$ [10]. Taking into account the number of energy levels available—in general for the S_6 symmetry and especially for the Eu³⁺ in $C-Y_2O_3$ —the full phenomenological cf simulation is clearly impossible. However, there exists an *a priori* calculation concerning the cf parameters for Eu^{3+} -doped C-Y₂O₃ [24] which, taking into account the inherent limitations of such calculations, can give reliable values for the sixth-rank and, to a certain extent, for the fourth-rank parameters, too. The second-rank parameter values are still better obtained from experimental data. These restrictions are well suited to the Eu^{3+} -doped C-Y₂O₃ case since reliable experimental data are available for the cf splitting of both the ⁷F₁ and ⁷F₂ levels, which yield in a quite straightforward manner the second- and fourth-rank parameter values. More supporting experimental data are available from the analysis of the cf splitting of the four ${}^{6}P_{7/2}$ levels of the Gd³⁺ ion in the S₆ site of C-Y₂O₃ [26]. The cf splittings of both the ${}^{6}P_{7/2}$ and ${}^{7}F_{1}$ levels of Gd³⁺ and Eu³⁺, respectively, depend almost exclusively on the second-rank parameter values because the fourth- and sixthrank reduced matrix elements are very small or zero for these levels. The B_0^2 -parameter value was found to be negative and thus the value of the B_0^2 -parameter is now defined unambiguously.

The cf effect on the ${}^{7}F_{1}$ and ${}^{7}F_{2}$ levels of Eu³⁺ in the S₆ site was simulated by using the cf parameters from [24] as the starting set. The best-fit set of cf parameters (table 3) simulated the experimental energy level scheme well, as is revealed by the calculated energy levels with irreducible representations (table 2). The ${}^{7}F_{2}$ barycentre energy obtained from the computed levels is 995 cm⁻¹ which is close to the value deduced from the experimental data for a set of Eu³⁺-doped compounds (figure 3), and thus the present level assignments for the ${}^{7}F_{2}$ cf components can now be considered correct.

	Parameter value (cm^{-1})				
	C-Y ₂ O ₃ S ₆ site		C-Y ₂ O ₃ C ₂ site		
Parameter	Refined for Eu ³⁺	40% reduced from Eu ³⁺	Extrapolated for Yb ³⁺ [11]		
B_{0}^{2}	-1486	-892	-225		
B_{2}^{2}			-618		
B_{0}^{4}	-1248	-749	-1226		
B_{2}^{4}			-1012		
S_{2}^{4}			324		
B_{3}^{4}	-2346	-1407			
S_{3}^{4}	[267] ^a	160			
B_4^4			736		
S_4^4			-832		
B_{0}^{6}	[734] ^a	440	177		
B_{2}^{6}			284		
S_{2}^{6}			112		
B_{3}^{6}	[361] ^a	217			
S_{3}^{6}	[-33] ^a	-20			
B_{4}^{6}			62		
S_{4}^{6}			-159		
B_{6}^{6}	[567] ^a	340	-27		
S_{6}^{6}	$[-57]^{a}$	-34	-20		
N_V	4969	2980	3318		
Levels	6				
σ	7.5				

Table 3. Crystal field parameters for the Eu^{3+} and Yb^{3+} ions in the S_6 and C_2 sites of the cubic C-Y₂O₃. (Values in square brackets were kept fixed in refinements.)

^a From [24].

3.3. Energy level scheme of Yb^{3+} in the S₆ site

The previous, incorrect level assignments obtained for the Eu³⁺-doped C-Y₂O₃ [20, 23, 27] will inevitably lead to incorrect calculated cf splittings of the ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ levels of Yb³⁺ in the S₆ site of C-R₂O₃. The prediction of the splitting of the two ${}^{2}F$ levels of Yb³⁺ in the S₆ site of C-R₂O₃ will be carried out by using the following two basic ideas:

- (a) evolution of the cf strength along the lanthanide series [28, 29]; and
- (b) the relationship between the ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ barycentre energies together with some energy level data reported previously [4, 18].

The cf strength in any host can be described the parameter N_V [30]:

$$N_V = \left[\sum_{k,q} \left(\frac{4\pi}{2k+1}\right) |B_q^k|^2\right]^{1/2}.$$
(3)

The N_V -value decreases with decreasing ionic radius of the dopant if the dopant is embedded in the same host lattice [28, 29], as shown for the R³⁺ doped in the C₂ site of Y₂O₃ (figure 4).

Figure 4. Crystal field strength parameter, N_V , as a function of the ionic radius of the dopant in the R³⁺-doped cubic C-Y₂O₃ series (C₂ site).

The individual cf parameter values [10, 11, 31] follow the evolution of the N_V -value, at least in the Y₂O₃:R³⁺ series.

The evolution of the cf B_q^k -parameter values as a function of the host cation can be divided into two parts:

- (a) the evolution of the radial integrals $\langle r^k \rangle$; and
- (b) the evolution of the values of the lattice sum parameter A_a^k :

$$B_q^k = \tau^{-k} (1 - \sigma_k) A_q^k \langle r^k \rangle \tag{4}$$

where the factors τ and σ_k describe the expansion of the 4f wavefunctions in the solid state and the shielding effect of the outer electrons, respectively. The increase in the values of the lattice sum parameter A_q^k is more than compensated by the decrease in the values of the radial integral $\langle r^k \rangle$, resulting in an overall decrease in the cf B_q^k -parameter values from the cerium to the ytterbium host. Experimentally, this has been verified both for the ROCI [31] and R₃Ga₅O₁₂ [28] series, but this evolution for the C-R₂O₃ series cannot be verified because of the lack of experimental data (see e.g. [10]).

The N_V -value is reduced by $\approx 25\%$ from europium to ytterbium in the Y₂O₃:R³⁺ series (figure 4). A further decrease can be expected with decreasing size of the host cation, e.g. from Y₂O₃ to Sc₂O₃, in accordance with the electrostatic point charge model (equation (4)), but the exact amount of this decrease cannot be verified due to the evident lack of experimental data (Y³⁺ and Sc³⁺ have no *n*f energy levels to study). The exact estimation is further made more difficult because of the local distortions created by the introduction of the dopant with different size to the host cation [28]. Using the relationship between the total cf splitting of the ^{2S+1}L_J level and the N_V-value [30, 32], the amount of the modification of the cf parameters was established by comparison between the experimental and calculated cf splittings of the ²F_{7/2} level of Yb³⁺ in the S₆ site of C-Sc₂O₃ (figure 5). Yb³⁺-doped C-Sc₂O₃ was chosen as a point of reference since enough experimental data were available for this system. In total, a decrease of around 40% in the cf parameters (and in the N_V-value) was obtained from C-Y₂O₃:Eu³⁺ to C-Sc₂O₃:Yb³⁺ (table 3). The cf splitting of the ²F_{7/2} level of the Yb³⁺ ion in the S₆ site of

Figure 5. Crystal field splitting of the ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$ levels of the Yb³⁺ ions in the S₆ site of the cubic C-Sc₂O₃. The levels marked with * were deduced from the overall splitting and barycentre position of the ${}^{2}F_{5/2}$ level. The calculated scheme was obtained with the reduced cf parameters (table 3). The ${}^{2}F_{7/2}$ scheme was calculated using the cf parameters extrapolated from the C-Y₂O₃:R³⁺ series [27].

 $C-Sc_2O_3$ calculated by using the reduced values of the cf parameters for $C-Y_2O_3$: Eu³⁺ indicates a good agreement between the experimental and calculated energy level schemes (figure 5).

In order to find the cf splitting of the excited ${}^{2}F_{5/2}$ level of the Yb³⁺ ion in the S₆ site of C-Sc₂O₃ a procedure quite similar to that used previously in section 3.1 was employed. The site-selective excitation spectra of Yb³⁺ in cubic C-R₂O₃ [33, 34] have shown clearly that the C₂ and S₆ sites possess two non-similar energy schemes for the ground ${}^{2}F_{7/2}$ level. The energies of the four cf components of the ${}^{2}F_{7/2}$ level for the S₆ site in C-Sc₂O₃ are 0, 323, 550, and 900 cm⁻¹ [34], while the lowest ${}^{2}F_{5/2}$ level is at 10 260 cm⁻¹ [35]. As the overall cf splitting of the ground level is known (900 cm⁻¹), the overall splitting of the excited level ${}^{2}F_{5/2}$ can be deduced to be about 750 cm⁻¹ (figure 6) and thus the highest cf level is at 11 010 cm⁻¹. The last step is to find the missing third cf level of the ${}^{2}F_{5/2}$ manifold. Since all the four cf levels of the ground ${}^{2}F_{7/2}$ level are known, it is possible to deduce the barycentre of the ${}^{2}F_{5/2}$ level (figure 7) to be at 10 593 cm⁻¹, corresponding to the barycentre of ${}^{2}F_{7/2}$ at 443 cm⁻¹. The third ${}^{2}F_{5/2}$ level must thus be at 10 505 cm⁻¹.

The comparison of the predicted and calculated ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ energy level schemes for Yb³⁺ in the S₆ site of C-Sc₂O₃ yielded surprisingly good results (figure 5). The two sets of cf splittings for both free ion levels were very similar (the experimental values are in parentheses): 0 (0), 253 (323), 551 (550), and 840 (900) cm⁻¹ for the ${}^{2}F_{5/2}$ level and 102 43 (10 260), 10 503 (10 505), and 10 941 (11 010) cm⁻¹ for the ${}^{2}F_{5/2}$ level. The results obtained indicate that the method used to predict the ${}^{2}F_{5/2}$ cf level scheme is reliable.

Figure 6. The relationship between the overall splitting of the $^2F_{5/2}$ and $^2F_{7/2}$ levels for various Yb^3+-doped compounds.

Figure 7. $^2F_{5/2}$ barycentre energy as a function of the $^2F_{7/2}$ barycentre for various Yb^3+-doped compounds.

In contrast to the C-Sc₂O₃:Yb³⁺ case where the cf splitting of the ground level is known [34], only the excited ${}^{2}F_{5/2}$ level scheme of C-Y₂O₃:Yb³⁺ has been determined experimentally [35, 36]. The absorption line at 10 517 cm⁻¹ has been assigned to the S₆ site of Yb³⁺ and the highest ${}^{2}F_{5/2}$ sublevel is situated at about 10 900 cm⁻¹ [36]. The lowest ${}^{2}F_{5/2}$ cf level seems to be at 10 243 cm⁻¹ [35]. The experimental ${}^{2}F_{5/2}$ level scheme of Yb³⁺ in C-Y₂O₃ is thus 102 43–10 517–10 900 cm⁻¹, while that calculated by using the reduced cf parameters (table 3) is 10 243–10 503–10 941 cm⁻¹ (figure 5). The agreement between the experimental and calculated cf splittings of the ${}^{2}F_{5/2}$ level is rather good. The differences underline the fact that the cf effect is stronger in the C-Sc₂O₃ than in the C-Y₂O₃ host. The last ${}^{2}F_{5/2}$ energy level scheme in figure 5 obtained by using the extrapolated cf parameters [27] is different to the others. The reason for this is—at least partly—the B_{0}^{2} -parameter, which was deduced to be positive [27] in contradiction to the present work as well as the literature values [24].

Figure 8. Calculated and experimental cf splittings of the ${}^{2}F_{5/2}$ and ${}^{2}F_{7/2}$ levels of the Yb³⁺ ions in the C₂ site of C-Y₂O₃: (A) calculated with the cf parameters [35], (B) calculated with the extrapolated cf parameters [11], (C) experimental data [35], (D) from absorption spectra [35], (E) experimental data [37].

3.4. Energy level scheme of Yb^{3+} in the C_2 site

As the final part of the present work, the energy level scheme for the Yb^{3+} ion in the C₂ site of C-Y₂O₃ was investigated by using the procedures described above. Different energy level schemes have been obtained experimentally and by calculations (figure 8). Schemes A and B are those calculated by using the cf parameters [36] and the extrapolated cf parameters [11], respectively, while scheme C has been obtained experimentally [35]. In general, the results are rather similar and the individual cf splittings of both levels are reproduced rather well, though the calculated overall splittings of the ground level seem to be slightly too large. The experimental data give the overall cf splittings of 941 and 784 cm⁻¹ for the ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ levels, respectively. These values are confirmed by the literature data (figure 6) which means that the lowest and the highest cf levels of the experimental data [35] are correctly chosen for both levels.

The experimental ${}^{2}F_{7/2}$ barycentre is at 487 cm⁻¹, which corresponds to 10 636 cm⁻¹ for the ${}^{2}F_{5/2}$ barycentre (figure 7). However, the experimental ${}^{2}F_{5/2}$ barycentre at 10 596 cm⁻¹ is in disagreement with the predicted value. One of the cf levels of the ${}^{2}F_{5/2}$ level is thus incorrect and since the overall splittings were found correctly it is most probably the middle Stark level. According to predictions, the incorrect (or missing) cf level should be at 10 635 cm⁻¹. This statement is supported by scheme D which corresponds to the experimental data (10 243, 10 629, and 11 030 cm⁻¹) reported for the C₂ site in C-Y₂O₃:Yb³⁺ [36]. The last experimental energy level scheme E is similar to C as far as the excited ${}^{2}F_{5/2}$ level is concerned, but the ground ${}^{2}F_{7/2}$ level scheme is slightly different.

4. Conclusions

Reliable energy level schemes of the Yb³⁺ ions embedded in various crystalline matrices are difficult to establish experimentally due to the presence of vibronic lines—both in the absorption and emission spectra. However, the knowledge of the cf level energies of the ${}^{2}F_{7/2}$ and ${}^{2}F_{5/2}$ free ion levels is very important for the understanding of the different processes involved, e.g. in the new DPSSLs. In the present study a method was presented for establishing the energy levels of the Yb³⁺ ion in both the C₂ and S₆ sites of cubic C-type R oxides. The S₆ site of cubic C-RE₂O₃ presents a very complicated case due to a very restricted amount of experimental energy level information due to the selection rules for a point site which possesses an inversion centre.

The energy level schemes as well as the corresponding cf parametrization analyses for the Eu^{3+} and Yb^{3+} ions embedded in both the C_2 and S_6 sites were studied in detail and several modifications were suggested. The present results give a more reliable interpretation of the energy level schemes and are, moreover, in agreement with the literature data.

This approach has now been successfully applied to the interpretation of the spectra and energy level schemes of the Pr^{3+} , Nd^{3+} , Eu^{3+} [18], and Yb^{3+} ions in various host lattices. The utility of the methods presented in this work is evident and they should be adopted by all researchers working with R spectroscopy in order to solve spectroscopic puzzles due to lines of vibronic or impurity origin.

Acknowledgment

Financial support from the Academy of Finland (project No 5066/2000) for EAF is gratefully acknowledged.

References

- [1] Krupke W F 2000 IEEE J. Sel. Top. Quantum Electron. 6 1287
- [2] Druon F, Chenais S, Raybaut P, Balembois F, Georges P, Gaume R, Aka G, Viana B, Mohr S and Kopf D 2002 Opt. Lett. 27 197
- [3] Haumesser P H, Gaume R, Viana B, Aka G, Vivien D and Ferrand B 2001 Trends Opt. Photon. 50 425
- [4] Haumesser P H, Gaume R, Viana B, Antic-Fidancev E and Vivien D 2001 J. Phys.: Condens. Matter 13 5427
- [5] Lebedev V A, Voroshilov I V, Ignatiev B V, Gavrilenko A N, Isaev V A and Shestakov A V 2000 J. Lumin. 92 139
- [6] Druon F, Balembois F, Georges P, Brun A, Courjaud A, Honninger C, Salin F, Aron A, Mougel F, Aka G and Vivien D 2000 Opt. Lett. 25 423
- [7] Wang P, Dawes J M, Dekker P and Piper J A 2000 Opt. Commun. 174 467
- [8] Peters V, Mix E, Fornasiero L, Petermann K, Huber G and Basun S A 2000 Laser Phys. 10 417
- [9] Blasse G and Grabmaier B C 1994 Luminescent Materials (Berlin: Springer)
- [10] Görller-Walrand C and Binnemans K 1996 Rationalization of crystal-field parametrization Handbook of the Physics and Chemistry of Rare Earths vol 23, ed K A Gschneidner Jr and L Eyring (Amsterdam: Elsevier) ch 155
- [11] Morrison C A and Leavitt R P 1982 Spectroscopic properties of triply ionized lanthanides in transparent host crystals *Handbook of the Physics and Chemistry of Rare Earths* vol 5, ed K A Gschneidner Jr and L Eyring (Amsterdam: North-Holland) ch 46
- [12] Faucher M and Pannetier J 1980 Acta Crystallogr. 36 3209
- [13] Marezio M 1966 Acta Crystallogr. 20 723
- [14] Fert A 1962 Bull. Soc. Fr. Minéral. Cristallogr. 85 267
- [15] Lonsdale K (ed) 1962 International Tables for X-ray Crystallography vol 3 (Birmingham: Kynoch) p 163
- [16] Wybourne B G 1965 Spectroscopic Properties of Rare Earths (New York: Interscience) ch 6
- [17] Judd B R, Crosswhite H M and Crosswhite H 1968 Phys. Rev. 169 130
- [18] Antic-Fidancev E 2000 J. Alloys Comp. 300/301 2

- [19] Porcher P 1989 Computer Program IMAGE for the Simulation of d^N and f^N Configurations Involving the Real Crystal Field Parameters (CNRS, Meudon, France, 1989) (unpublished)
- [20] Heber J, Hellwege K H, Köbler U and Murmann H 1970 Z. Phys. 237 189
- [21] Tola P, Dexpert-Ghys J, Lemonier M, Retournard A, Pagel M and Goulon J 1983 Chem. Phys. 78 339
- [22] Su Q, Barthou C, Denis J P, Pelle F and Blanzat B 1983 J. Lumin. 28 1
- [23] Schaak G and Koningstein J A 1970 J. Opt. Soc. Am. 60 1110
- [24] Faucher M and Dexpert-Ghys J 1981 Phys. Rev. B 24 3138
- [25] Görller-Walrand C, Huygen E, Binnemans K and Fluyt L 1994 J. Phys.: Condens. Matter 6 7797
- [26] Antic-Fidancev E, Lemaître-Blaise M and Caro P 1982 J. Chem. Phys. 76 2906
- [27] Gruber J, Leavitt R P, Morrison C and Chang N C 1985 J. Chem. Phys. 82 5373
- [28] Antic-Fidancev E, Hölsä J, Lastusaari M and Lupei A 2001 Phys. Rev. B 64 195108
- [29] Antic-Fidancev E, Hölsä J and Lastusaari M 2002 J. Alloys Compounds 341 82
- [30] Auzel F and Malta O L 1983 J. Physique 44 201
- [31] Hölsä J, Lamminmäki R-J, Lastusaari M, Porcher P and Sáez Puche R 2000 J. Alloys Compounds 300/301 45
- [32] Malta O L, Antic-Fidancev E, Lemaître-Blaise M, Taibi M and Milicic-Tang A 1995 J. Alloys Compounds 228 41
- [33] Petermann K, Huber G, Fornasiero L, Kuch S, Mix E, Peters V and Basun S A 2000 J. Lumin. 87-89 973
- [34] Petermann K, Fornasiero L, Mix E and Peters V 2002 Opt. Mater. 19 67
- [35] Mix E 1999 Dissertation Hamburg University (Aachen: Shaker) (ISBN 3-8265-6686-6)
- [36] Chang N C, Gruber J, Leavitt R P and Morrison C 1982 J. Chem. Phys. 76 3877
- [37] Laversenne L, Guyot Y, Goutaudier C, Cohen-Adad M T and Boulon G 2001 Opt. Mater. 16 475